Structural basis of receptor‐dependent G protein activation
نویسندگان
چکیده
منابع مشابه
Molecular basis for activation of G protein-coupled receptor kinases.
G protein-coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor doc...
متن کاملStructural prerequisites for G-protein activation by the neurotensin receptor
We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A(3.49), L3...
متن کاملStructural insights into G-protein-coupled receptor activation.
G-protein-coupled receptors (GPCRs) are the largest family of eukaryotic plasma membrane receptors, and are responsible for the majority of cellular responses to external signals. GPCRs share a common architecture comprising seven transmembrane (TM) helices. Binding of an activating ligand enables the receptor to catalyze the exchange of GTP for GDP in a heterotrimeric G protein. GPCRs are in a...
متن کاملStructural basis of natural ligand binding and activation of the Class II G-protein-coupled secretin receptor.
The secretin receptor is prototypic of Class II GPCRs (G-protein-coupled receptors), based on its structural and functional characteristics and those of its natural agonist ligand. Secretin represents a linear 27-residue peptide with diffuse pharmacophoric domain. The secretin receptor includes the typical signature sequences for this receptor family within its predicted transmembrane segments ...
متن کاملStructural Basis of Integrin Activation by Talin
Regulation of integrin affinity (activation) is essential for metazoan development and for many pathological processes. Binding of the talin phosphotyrosine-binding (PTB) domain to integrin beta subunit cytoplasmic domains (tails) causes activation, whereas numerous other PTB-domain-containing proteins bind integrins without activating them. Here we define the structure of a complex between tal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2006
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.20.5.a918-d